Definitions | s = t, t T, x:A B(x), x:A. B(x), E(X), strong-subtype(A;B), ES, AbsInterface(A), x:A B(x), b, left + right, Top, P  Q, P  Q, Type, , P & Q, P   Q, e  X, E, {x:A| B(x)} , x:A. B(x), a:A fp B(a), let x,y = A in B(x;y), t.1, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , , True, T, Dec(P), b | a, a ~ b, a b, a <p b, a < b, A c B, f(a), x f y, x L. P(x), ( x L.P(x)), r s, r < s, q-rel(r;x), Outcome, (x l), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e c e', e<e'.P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e [e1,e2).P(e), e [e1,e2).P(e), e [e1,e2].P(e), e [e1,e2].P(e), e (e1,e2].P(e), SqStable(P), A, a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), f g, type List, f(x)?z, Unit, ff, inr x , tt, inl x , False, <a, b>, IdLnk, Knd, Id, locl(a), loc(e), vartype(i;x), state@i, EqDecider(T), State(ds), State(ds),  x. t(x) |